
BALL IS LIFE: The Autonomous Trash Can Project

Hyungsuk (Peter), Kim, Maruchi Kim, Amit Patankar, Spencer Schack

I. ABSTRACT

This project designs and implements an autonmous mov-
ing trash can that will calculate the trajectory of a thrown
trash projectile, actuate the motors of a moving base, and
attempt to catch the trash projectile. The sensor(s) utilized
will be an Xbox Kinect Camera. Image and depth data
from the Kinect Camera will be sent to a MacOS computer
to determine the trajectory of the trash projectile in 3D
space. Location of the trash can will be implemented via
AR (Augmented Reality) tags using ROS (Robot Operating
System). The MacOS computer will then determine the
appropriate motor speed and wheel direction to reach the
projected destination of the trash projectile and transmit this
information to an Arduino on the moving trash can via
Bluetooth Low Energy.

A. Notes

From the original project charter we’ve decided to scale
down the project by making a trash catcher instead of a bas-
ketball catcher. We realized that catching a basketball would
be too difficult to implement with the resource constraints of
the project. Basketballs travel much further at higher rates of
speed and have the potential to severely damage equipment
based upon their mass and momentum.

From the milestone update, we’ve decided to detach the
Xbox Kinect Camera from the trash can and forego the use of
a Raspberry Pi. The Raspberry Pi did not have the required
processing power to calculate the trajectory of the thrown
projectile in a limited amount of time.

Fig. 1: Working Prototype of Autonomous Trash Can

II. IMPLEMENTATION

A. Software

We designed and implemented the following modules: a
Find module in Python to utilize image and infrared data
from the Xbox Kinect Camera to track trash projectile in 3D
space using Ros and OpenCV; a Trajectory module in Python
to utilize 3D space coordinates to determine trajectory of
trash projectile using Numpy and Scipy. A Navigation mod-
ule in Python to convert the destination coordinates to motor
speeds to communicate to the Arduino on the moving trash
can. All modules were developed on the MacOS platform.

Fig. 2: Xbox Kinect Camera

Fig. 3: Augmented Reality Tag



B. Software Notes

All modules were originally implemented to be compatible
to run on a Raspberry Pi, but were modified to run on
MacOS after abandonment of the Raspberry Pi for final
implementation.

Fig. 4: Hercules 4WD Robotic Platform

C. Hardware

We ordered and assembled the Hercules 4WD robot kit
which sports a 15A 6V-20V Motor Controller with full H-
Bridges and an ATMEGA 168 board. By having independent
motors on each wheel, the robot base has the capability of
spinning in place. Components we added to augment the
kit include a BLE module for communication, 9 DOF IMU
for orientation data, and a power switch. From the MacOS
computer, the robot receives x-y coordinates, and then spins
and drives forward or backward accordingly to catch the trash
projectile.

Fig. 5: Adafruit 9-DOF IMU Breakout

D. Hardware Notes

The team had originally bought bare bone components
to attempt to build the base from scratch. However, some
complications arose through gears fitting incorrectly, and
the motor driver board being unable to support the motors
purchased. As such, we decided to move to the Hercules
robot platform to focus on adding BLE support and 9DOF
IMU data. The additional time has also allowed time to better
focus on embedded algorithms discussed later in the report.

Fig. 6: Adafruit BLE nRF8001 Breakout

III. ALGORITHMS

A. Projectile Detection

To detect and distinguish the projectile in 3D space, we
used the depth data from the Kinect and filtered the data
with OpenCV. First, we filtered out anything farther than 3
meters from the camera. After that, we ran the image through
an OpenCV function called findContours which returns
a list of shapes found in the image. These shapes are then
scored by size, shape, and distance and the best candidate is
picked from the list. The center point of the shape is then
projected into 3D space, which is done by using the distance
of the object from the camera and the field of view of the
Kinect which is 43�vertically and 57�horizontally.

Fig. 7: Projectile Detection via OpenCV

B. Trajectory Prediction

To predict that trajectory of the projectile, we first sample
3 points tracking the trash projectile’s progression through
3D space. Then using the method of least squares, we
fit the sampled points to two parabolas: one modeling X-
Z and the other modeling Y-Z. Using the intersection of
these two parabolas we can predict the trajectory of the
projectile. Before passing through the prediction algorithm,
the points we sample from the Kinect are transformed from
the camera’s frame to the robot’s frame by ROS using the



position and orientation data provided by the AR tags on the
robot.

Fig. 8: 3D Visualization of Robot and Projectile in rvis

C. Motor Actuation

The brushed DC motors are controlled through a NMOS-
FET H-Bridge Motor Controller. The MOSFETs are con-
trolled through the microcontroller which runs at 5V logic.
By providing the gates of the MOSFETs with 5V, the
MOSFETs turn on for a certain percentage of the duty cycle,
also known as Pulse Width Modulation (PWM). Figure 9
goes into detail of the workings of PWM. When going
straight, the robot’s duty cycle is at 100 percent, and while
spinning in place the duty cycle is at 80 percent.

Fig. 9: Graph Detailing PWM

With PWM, we can control our robot’s acceleration. How-
ever our robot needed to be aware of how far it has traveled.
We ran an experiment to see how far our robot would travel
under variable amounts of milliseconds under 100 % PWM.
The results of our experiment show that the robot’s response
was quite linear, and so the way we controlled how far our
robot traveled was by controlling our motors at 100 % PWM
for x milliseconds.

Fig. 10: Time vs. Distance of 100% PWM

IV. MODELS

Xbox Kinect

Image Processor (OpenCV)

Trajectory Estimation (NumPy, SciPy)

Arduino Robot Base

H-Bridge Motor Controller

ROS

Python

BLE

PWM Control

High level overview of software and hardware components
and dependencies.

Layout of trash can and Kinect camera.



V. ANALYSIS

A. Finite State Machine Model

Waitingstart Sampling

Driving

3 sample points

ball dropreach coordinates

Finite State Machine for Trajectory Module with three
states for

B. Motor Speed and Torque Requirements

The required torque for the motors will be based off the
speed at which we need to arrive at a goal state. This speed
will depend on the time it takes to process the depth data
from the Kinect and the amount of time it takes for an
average piece of trash to fall to the ground.

We take some samples to see how long it takes for a piece
of trash to fall to the ground:

Trial Time (s)

1 0.5
2 0.4
3 0.3
avg. 0.4

Our goal is for the trash can to catch trash within a 2
meter radius. Assuming the worst case:

a =
2d

t

2
=

4m

0.16s
= 25ms�2

We also need to estimate the total weight:

Component Mass (kg)

Trash can 0.5
Kinect 0.5
Raspberry Pi 0.045
Wheels 0.1
Chassis 0.7
Total 1.845

So the required force of the wheel against the ground will
need to be:

F = ma

= 1.845kg ⇥ 25ms�2

= 46.125kgms�2

The required torque will be the acceleration times the
radius of the wheels:

⌧ = Fr

= 46.125kgms�2 ⇥ 0.03m

= 1.38375kgm2s�2

The torque of the motors is:

255gcm = 0.00255kgm

= 9.8m/s2 ⇥ 0.00255kgm

= 0.02499kgm2s�2

The the gear ratio from the motor to the wheel will need
to be:

1.38375

0.02499
= 55.37214886 ⇡ 55 : 1

C. Angle Calculation

Using the x and y coordinates provided by the computer
we use an inverse tan function to calculate the angle that
we are required to turn. We subtract 180 degrees from the
angle measurement to give us an angle in the range from
(-180,180).

The measured angle where x and y are in meters, where
a deduction of 180 is present so that the robot is aware of
left and right turns.:

✓ = tan�1(
x

y

)� 180 (1)

To turn to the appropriate angle we created a linear time
based model that actuated the motors for a specified time.

D. Feasible Catch Area

By calculating the maximum speed of the motors and
incorporating the average time a trash projectile remains in
flight, we are able to estimate the feasible catch area for our
autonmous trash can.The worst case scenario for turning is
90 degrees which takes roughly 300 ms. Thus without the
turn in the best case scenario we can accelerate to the target
point and in the worst case scenario we turn 90 degrees
before accelerating. We have assumed we will have 500
ms before the trash hits the ground and have measured our
wheels to be 8cm in diameter.

With Turning

width =
2⇡ ⇥ 0.04m⇥ 310rpm

60s
⇥ 0.2s = 0.26m

Without Turning

height =
2⇡ ⇥ 0.04m⇥ 310rpm

60s
⇥ 0.5s = 0.64m

Figure 11 outlines the robot’s ”catch area”, basically the
feasible drop zone given the robot’s physical capabilities.



0.26m

0.64m

Fig. 11: Feasible Catch Zone

VI. DIFFICULTIES

A. Software

We experienced a lot of trouble setting up the Xbox Kinect
Camera on a Raspberry Pi due to multiple dependency issues
present on Raspbian’s (Raspberry Pi’s Ubuntu-based OS)
outdated package manager. We circumvented this issue by
deciding not to use the Raspberry Pi in our final implemen-
tation.

Another issue we faced was latency from the Kinect,
our software algorithms, BLE packets, and eventually motor
actuation. Due to this we had to preemptively control our
robot to move below the trash and then drop it into the trash
can.

B. Hardware

We experienced a trouble when we initially fixed a plastic
trash can on top of our robot base. Due to the dimensions
and mass of the plastic trash can, the robot would jerk and
sometimes topple while attempting to rotate because of the
high center of gravity.

Another complication that arose was with the 9DOF IMU.
Initially we had placed it close to the robot base, but as
the brushed DC motors began spinning, the team found that
the magnetometer onboard the IMU was very susceptible
to magnetic noise introduced by the motors. Consequently,
the IMU was moved toward the lip of the trash can (seen
in Figure 2). Even then, we found that the IMU orientation
data was extremely nonlinear, we found much better results
through just turning and stopping based on a variable amount
of time.

VII. CONCLUSION

This project involved a lot of key concepts from class.
Modeling of physical dynamics was seen through our motor
speed and torque requirements analysis. Reliable realtime
behavior was exemplified through the way we implemented
distance and angle control. We went through modal analysis
governed by FSMs through our finite state machines. Finally
we implemented a simple realtime network through BLE
communication between our computing platform and our
robot.

Despite all of this and other careful planning, we ran into
various problems that were practically impossible to foresee

when applying our design to real world systems. However,
through robust modeling and frequent design iterations, we
were able to successfully design and implement a working
prototype of our autonomous trash can.

VIII. ACKNOWLEDGMENTS

Professor Edward A. Lee
Professor Alberto L. Sangiovanni-Vincentelli
GSI Antonio Ianopollo
CITRIS Invention Lab


